If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+96x+264=0
a = 6; b = 96; c = +264;
Δ = b2-4ac
Δ = 962-4·6·264
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-24\sqrt{5}}{2*6}=\frac{-96-24\sqrt{5}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+24\sqrt{5}}{2*6}=\frac{-96+24\sqrt{5}}{12} $
| (X-11)(x÷9)=0 | | -80=-10(r-1) | | 6(x+7)=3(x+14)+3(x+1) | | -12=2x+x | | 5z-15=13 | | 7n-4=-4 | | 2.5n+15=4n | | 14a-(2a+9)=2/3(12a-13) | | (3x+16)-(-4x+66)=0 | | -5+6y=21 | | 10(x-1)=3 | | 9-1=12X+1x+1 | | 1/2(6x+12)-2(x-7)=19 | | 6•(x+3)12=12x | | 132=12(x+5) | | x=1/29/1/2 | | 3x+2x-9=46 | | -38=-8-6r | | 3(k-6)=3k-10 | | /-8=3y-2 | | X+4y+1=0 | | 7=8/1t+8/24t | | x2=49676 | | 1/2(6x+13)-2(x-7)=19 | | 17.95+97x=298.28 | | -6+p/4=-5 | | 6x(4/5-5/3)=(x/6)6x | | 6p^2=-23p+4 | | 2(6x+7)+10+7x=-52 | | 19-6=x | | (-1)²+y²=9 | | 2x+30=20-2x |